Week 1: Core Python, Data Handling, and Statistics (Days 1–7)
📍 Day 1 – Intro to Data Science
- What is Data Science?
- Lifecycle: Data Collection → Cleaning → Analysis → Modeling → Deployment
- Tools: Jupyter, Python, Git, Excel
📍 Day 2 – Python for Data Science
- Data types, loops, functions
- List, Dict, Tuple, Set
- File handling
📍 Day 3 – Numpy & Pandas Basics
- Arrays and matrix operations (Numpy)
- Series & DataFrame (Pandas)
- Importing CSV, Excel
📍 Day 4 – Data Cleaning & Preprocessing
- Handling missing values
- Duplicates, nulls
- Renaming, replacing, mapping
📍 Day 5 – Exploratory Data Analysis (EDA)
- Descriptive statistics
- Groupby, sorting, filtering
- Hands-on: Titanic dataset
📍 Day 6 – Data Visualization
- Matplotlib, Seaborn
- Plot types: histogram, bar, scatter, box, heatmap
- Hands-on: Correlation analysis
📍 Day 7 – Statistics for Data Science
- Mean, median, mode, std dev, variance
- Probability basics
- Distributions: normal, binomial
Week 2: Advanced Stats, ML Algorithms, and Model Building (Days 8–14)
📍 Day 8 – Inferential Stats & Hypothesis Testing
- Confidence intervals
- t-test, chi-square, ANOVA
- p-value explained
📍 Day 9 – Linear Regression
- Simple and multiple regression
- R², adjusted R²
- Hands-on: House price prediction
📍 Day 10 – Classification: Logistic Regression
- Binary vs multi-class classification
- Sigmoid function
- Evaluation: Confusion matrix, ROC curve
📍 Day 11 – Decision Trees & Random Forest
- Splitting criteria: Gini, Entropy
- Overfitting, pruning
- Hands-on: Loan approval prediction
📍 Day 12 – KNN & Naive Bayes
- Distance metrics in KNN
- Bayes theorem and Gaussian NB
- Hands-on: Email spam detection
📍 Day 13 – Unsupervised Learning
- K-means clustering
- Elbow method
- PCA for dimensionality reduction
📍 Day 14 – Model Evaluation & Tuning
- Cross-validation
- GridSearchCV, RandomSearchCV
- Bias-variance tradeoff
Week 3: Projects, Real-World Tools & Career Prep (Days 15–21)
📍 Day 15 – Time Series Analysis
- Date/time handling
- Rolling mean, autocorrelation
- Forecasting with ARIMA (brief)
📍 Day 16 – Natural Language Processing (NLP)
- Text cleaning (tokenize, stopwords, stemming)
- TF-IDF
- Sentiment analysis mini project
📍 Day 17 – SQL for Data Science
- SELECT, WHERE, JOIN, GROUP BY
- Subqueries
- Practice with sample database (e.g., SQLite or MySQL)
📍 Day 18 – Working with Real Datasets
- Kaggle datasets
- End-to-end EDA + model
- Hands-on: Diabetes prediction / Customer churn
📍 Day 19 – Mini Capstone Project
Choose 1:- Sales prediction
- Fake news detection
- Movie recommendation system
- Smart city traffic analysis
📍 Day 20 – Model Deployment
- Save model with Pickle/Joblib
- Flask/Streamlit web app
- Deploy to Heroku (or local server)
📍 Day 21 – Career in Data Science
- Resume tips, GitHub portfolio
- Data science roles: Analyst, ML engineer, DS
- Certifications, interview prep (case studies, SQL/ML Qs)
🧰 Tools & Libraries:
- Python (Jupyter Notebook)
- Numpy, Pandas, Matplotlib, Seaborn
- Scikit-learn
- SQL (SQLite / MySQL)
- Streamlit or Flask for deployment
- Kaggle for datasets
Course Info